The Autonomous Smart Window

Group 7

Nomar Barreto (EE)

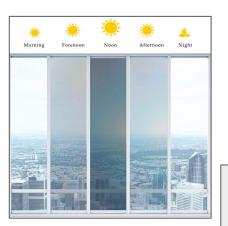
Bradley Howder (CREOL)

Abdullah Husain (CREOL)

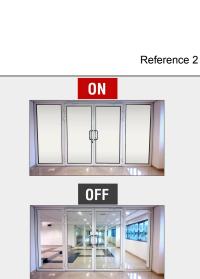
Kenneth Sauers (CpE)

Project Overview

Project Motivation


- Many intriguing window options and accessories exist, but very few multifunctional options are available
- Consumers are forced to pick and choose between which features they want
- Futuristic window features are easy to implement but are not yet mainstream
- Most, if not all, available window features can be incorporated into a single window unit design
- It is extremely difficult to find autonomous window accessories despite modern technological advances

Project Goals and Objectives



Our goal is to design a window unit that incorporates the following features:

- Variable tint
- Dimmable privacy screen
- Colorful LED lighting
- UV and infrared protection (heat prevention)
- All features controlled via mobile app
- A network of sensors allows for autonomous operation
- Supports various autonomous modes:
 - Security mode
 - Economic mode
 - Brightness monitoring mode
- Maintain a compact and aesthetically pleasing appearance at all times

Reference 1

Ð

Quantitative Specifications

Variable Tint

- Light transmission at 45% in the "off" mode
- Light transmission at 25% in the "energy saver" mode
- Light transmission at 1-5% in the "sunblock" mode
- Tinting takes effect in less than 10 seconds

Privacy Screen

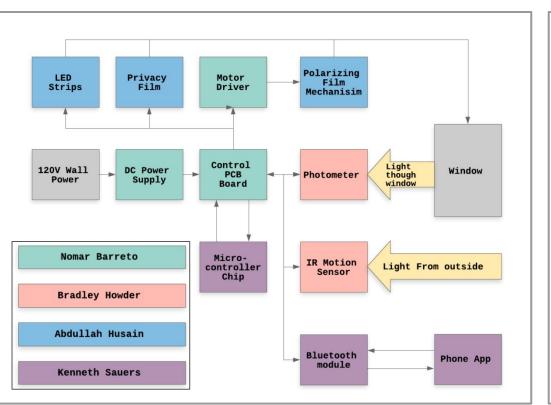
- Masks identity of user behind window
- Ability to turn off when clear visibility is desired
- PIR connectability to toggle on/off when movement is detected
- Dimmable to select anywhere within range of transparency of 10%-75%
- Switches on/off and dims in less than 1 second

LED Window Illuminator

- Will support dozens of colors and color combinations
- Privacy screen will be in "privacy" mode to scatter light across window
- Will illuminate the entire window uniformly
- Window will glow bright enough to act as a light source in a dark room

PIR Motion Sensor

- Privacy screen turns on when movement detected in front of window up to 10m
- Privacy screen turn on when movement detected behind window up to 10m
- Phone alert when suspicious activity (loitering) detected outside of window


Photometer

- Light transmitted through window shown in app and updated regularly
- Transmitted light shown to be 25% when tint mode is changed
- Tint showed to be controlled by how much transmitted light is being read

Phone App Integration

- Android phone app integration
- Controlled light transmission from phone
- Controlled window color and privacy screen from phone

Block Diagram

Autonomous Operation:

- Photometer and IR motion sensor send input signals to PCB
- PCB and microcontroller process inputs, send output signals to privacy screen and motor driver
 Motor driver varies tint level

User Operation:

- Mobile app sends signal to Bluetooth module
- Bluetooth module communicates with PCB, allowing user to control all features

Workload Distribution

Nomar Barreto (EE)

- Power supply and distribution
 - Designing voltage regulators
- Control PCB schematics & board designs
 - Component soldering
- Motor driver integration
- Managing all electrical connections
- ESP32 and Arduino Serial Communication

Abdullah Husain (CREOL)

- Variable tinting mechanism
 - Optimizing rotating device to obtain desired tint levels
- Privacy screen integration
- LED lighting feature

Bradley Howder (CREOL)

- PIR motion sensor
 - Programming Arduino
 - Optimizing detection range and angle
 - Circuit design and construction
- Photometer
 - Circuit design and construction of photodiode
 - Programming Arduino to convert from voltages to lumens, output analysis
 - Optimizing photodiode placement on window

Kenneth Sauers (CpE)

- Developing mobile application
- Bluetooth communication
- Microcontroller chip
- Window unit design and construction
- Design of rotating mechanism

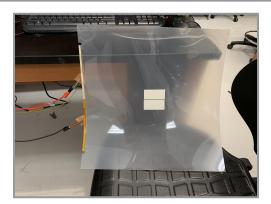
•

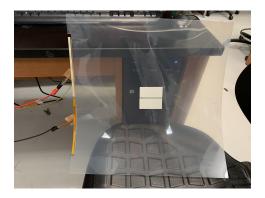
Window Unit Design and Optical Features

Window Unit Design

We designed and built a custom window unit:

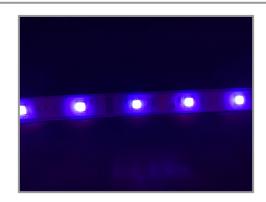
- Encasement is 19.5"x19.5"x3.75"
 - Made with Birch wood
 - Sealed with oil-based polyurethane
 - Provides ample space to house all electrical/mechanical components
- Window is double-pane plexiglass
 - Plexiglass is lightweight and less delicate than traditional glass
 - Over 3.5" between panes to place films, LEDs, and rotating mechanism in-between
 - Window is circular (11.5" diameter) to compliment rotating features (to be discussed)
 - Exterior pane faces outside, interior pane faces towards the room
- Swings open via hinges for easy access





PDLC Privacy Screen

- With no voltage applied, screen stays in "privacy mode", scatters incident light
- Applying DC current aligns liquid-crystal molecules, makes screen more transparent and scatters less light
 - Between the range of 0V and 30V, screen can be dimmed to the desired haze level
 - \circ $\,$ With 30V, screen becomes completely transparent
 - Switches on/off within 400 milliseconds
- Screen will be placed between panes, attached to the interior pane via adhesive
- Blocks out 99% of UV and 99% of IR when in "privacy" mode


LED Lighting Effect

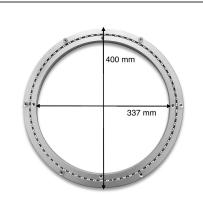
Color-varying LED strips:

- Will be mounted between window panes, directly facing privacy screen
- When privacy screen is in "privacy mode", LEDs can be turned on
- Privacy screen will scatter LED light, illuminate entire window
- Scattered light is bright enough to act as a decorative light source in a dark room
- Color can be selected via mobile app
- Emitting multiple colors simultaneously is supported

Variable Tinting: Polarizing Films

Variable tint is accomplished via two linear polarizing films:

- Both films placed between window panes
 - First film mounted against exterior pane, determines the optical axis
 - Second film mounted on a rotating bearing, placed between the first polarizing film and the interior pane
- Whe oriented along same optical axis, 45% of visible light is transmitted
- Bearing will rotate via pulley system, rotating the second polarizing film
- Rotating second polarizer off of optical axis results in tinting effect
- Angle can be selected to achieve 45%-0% light transmission through window



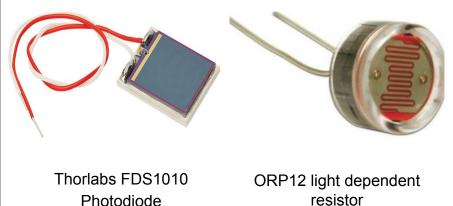
Variable Tinting: Rotating Mechanism

The gear/pulley system is responsible for precisely altering the window's transmissivity:

- 400mm diameter gear attached to rotating bearing
 - Gear was laser cut from birch wood
 - 5 1,256 teeth
- 13mm diameter gear attached to stepper motor
 - Made of aluminium
 - 20 teeth
- Round toothed rubber timing belt responsible for torque transfer
- Step size of stepper motor can rotate polarizer in increments of .0286 degrees
 - Extremely precise control over tint levels

Window Illumination

Goal:

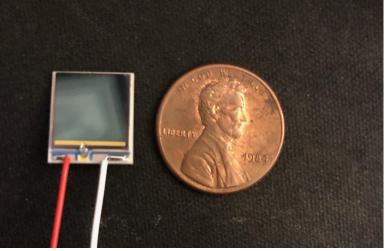

To create a natural light illumination/delumination device built inside of the window allowing for the user to control how much light passes through the window at any given time using the rotating polarizers.

Light dependent resistor pros	Photodiode pros
Low cost	Fast response time
Durable	Accurate and precise measurements
Low operation cost	Low noise and high light sensitivity

Bradley Howder

Approach: Real-time measureme

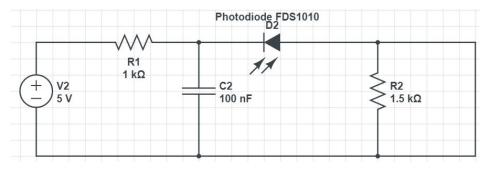
- Real-time measurement of the incident light coming through the window.
- Small enough to maintain Aesthetic appearance



Photometer Design

Function: Photodiode will receive light and convert incident light power to lumens. Polarizers will rotate until the desired lumen level in the room has been achieved.

Photodiode - FDS1010	
Wavelength chosen for Lumen measurement	555 nm
Responsivity at 555 nm (R _,)	0.25 A/W
Max dark current (5V)	600 nA
Capacitance (5V)	375 pF
Rise time	65 ns



Photodiode- Thorlabs Fds1010

- Price: \$55.73
- Wavelength Range 350 nm 1100 nm
- Size: 1 cm x 1 cm

Photodiode Circuit Design

- Resistor R1 and capacitor C2 will be used as the noise filter.
- The voltage source is the reverse biased voltage, allowing for faster rise and fall times.
- Resistor R2 will be the load resistor where the photocurrent generated will be converted to voltage.


Bradley Howder ON AT. II COP

Photodiode Circuit test in low light.

Photodiode Circuit Schematic

Photometer Implementation

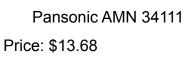
- $P_{(Watts/cm^2)} = I_{(photocurrent)} / R_{\lambda(responsivity)}$ \rightarrow Relationship of photocurrent to power
- $P_{(Watts/(cm^2))} = (V_{(out)}/V_{(B)})/(R_{\lambda(responsivity)} \times R_{L(Load)})$ $(R_{resistor}) \rightarrow Relationship of photo voltage to power$
- P_(Watts) = (P_(Watts/cm^2) × A_(window area))
 → Relationship between photodiode area and window area
- Lumens = P_(Watts)x 683 x y(λ)_(photopic standard)
 → Relationship between generated watts and perceived brightness of window
- Difficulties:
 - Trouble implementing photodiode where incident sunlight can fully strike the surface without compromising aesthetic appeal.

- Window frame model with rotating polarizers
- Photodiode attached to inside window pane

Motion Detection

Goal:

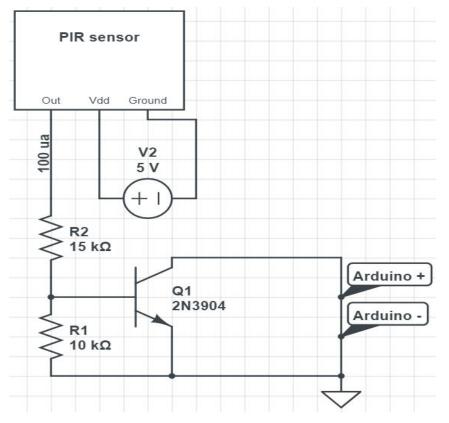
To create a privacy/security system that will give the owner peace of mind. When somebody walks by the window or attempts to peer through the window up close the privacy screen will turn on.


Passive Infrared Motion Sensor	Ultrasonic motion sensor
Line of sight detection	No visibility detection
Low cost	Medium cost
Blackbody radiation detection method	Frequency detection method

Approach:

- Real-time monitoring of human motion passing in front of window.
- Long range and low cost with low false detection rate

URM06 - Analog Ultrasonic Sensor Price: \$59.90


PIR Motion Sensor


Bradley Howder

Panasonic AMN34111	Detection Characteristics	Panasonic AMN34111	Operating Characteristics
Detection range (max)	10 m	Vdd	3V DC (min) 6V DC (max)
Detection angle horizontal (max)	110°	Output current (detecting)	100 µa
Detection angle vertical (max)	93°	Output voltage (detecting)	Vdd - VL(load)
Circuit stability time	7s (typical) 30s (max)	Transistor type	NPN

PIR Motion Sensor Design

Bradley Howder

Pansonic AMN 34111

Range: 10m

Size: 18.53 mm x 17.4 mm x 17.4 mm

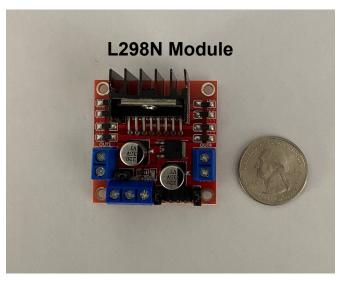
Motion sensor circuit design

Motion Sensor Implementation

- PIR motion sensor lens cap must protrude 5.6 mm outside of window to achieve maximum horizontal and vertical angle.
- Will communicate with mobile app to enable on/off functionality.
- Maximum detection range of 10 m due to ambient temperature range may vary from 7-10 m.
- Difficulties:
 - Protecting the motion sensor lens cap without sacrificing range and aesthetic appeal.

Smart window with PIR sensor placed outside

Electrical Components


Motor Driver

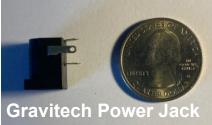
Function:

Take a low-current signal and turn it into a high current signal to drive the stepper motor to rotate the polarizing film mechanism.

Motor Driver	L289N	L293D
Operating Supply Voltage (Max)	46V	36V
Max Continuous Output Current per Channel	2A	600mA
Max Power	25W	-
Motor Types Compatible	DC & Stepper	DC & Stepper
Efficiency	30-70%	50-90%

- Manufacturer: SongHe
- Dimensions: 43x43x27mm
- Price: \$8.71 (3 modules included)
- Input Voltage: 12V

AC Power Adapter & Connector

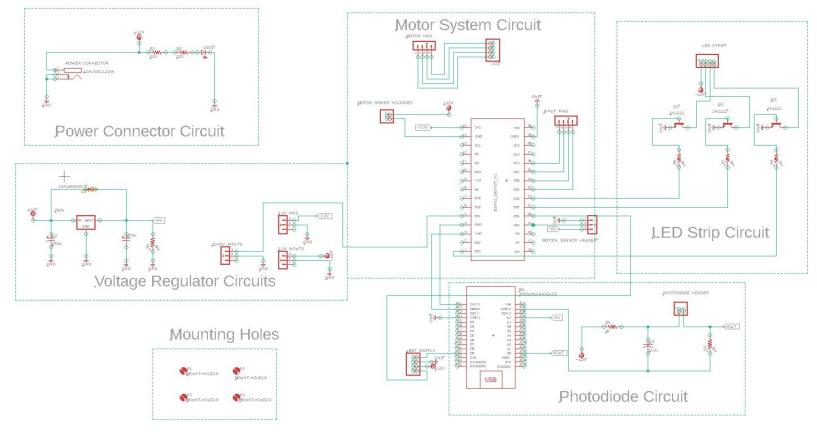

Function:

Take 120V AC voltage from wall and provide DC voltage to PCB and all other components.

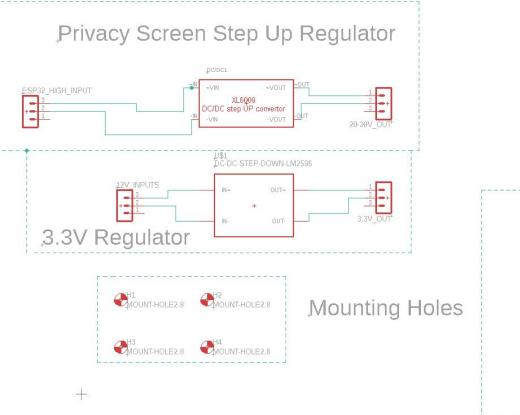
Manufacturer	TMEZON	Maxson
AC Input Voltage	100-240V	100-240V
DC Output Voltage	12V	15V
Current Rating	2A	2A
Max Wattage	24W	30W
Power Plug Dimensions	2.1mm x 5.5mm	2.1mm x 5.5mm, 2.5mm x 5.5mm
Cord Length	8ft	6ft

- Price: \$7.99
- Configuration: Center Positive
- Frequency Range: 50-60Hz

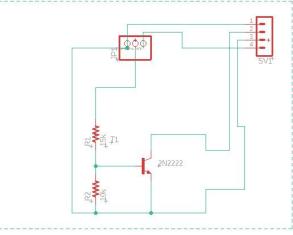
Stepper Motor

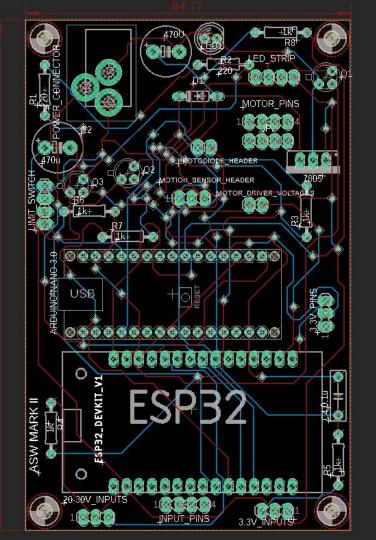

Manufacturer	OSM Technology Co., Ltd.	Twotrees
Step Angle	1.8deg	1.8deg
Holding Torque	13Ncm	42Ncm
Rated Current/phase	1.0A	1.5A
Phase Resistance	3.5Ω	1.5Ω
Inductance	4.5mH +/- 20%	1.5mH +/- 20%

OSM Technology NEMA 17 Stepper Motor (17HS08-1004S)



•


PCB Schematic 1



PCB Schematic 2

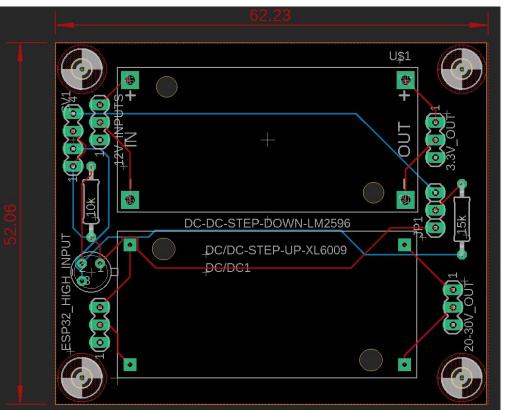
Motion Sensor Circuit

PCB Layout 1

Board Purpose:

Receive 12V DC voltage from AC adapter to power all subsystems. Includes headers for external connections.

- Layers: 2
- Current Dimensions: 64.77mm x 101.60mm
- Copper Pours: 2
- Manufacturer: JLCPCB
- # of Boards: 5

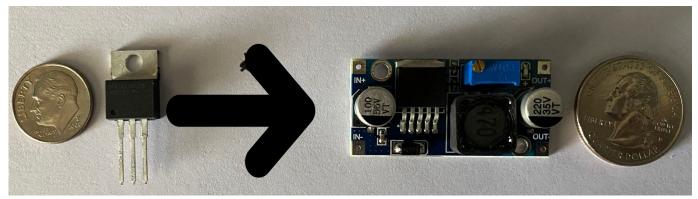

PCB Layout 2

Board Purpose:

Contains a buck converter and a boost converter to step down and step up the voltage. Also contains motion sensor components and headers.

- Layers: 2
- Current Dimensions: 62.23mm x 52.06mm
- Copper Pours: 1
- Mounting Holes: 4 (for 2.8mm diameter screws)

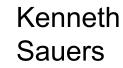
Circuit Design Successes and Difficulties


Difficulties

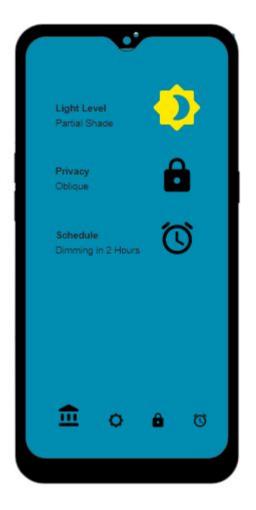
- 3.3V regulator overheating and overshooting voltage value
- Connecting motor driver, buck converter, and other components together resulted in system switching on and off

Successes

• Buck converter solved the 3.3V problem and turned on the ESP32

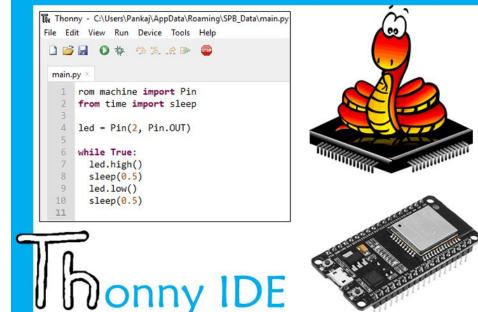

- Photodiode Circuit reads a voltage in sunlight presence
- Serial communication between ESP32 and Arduino Nano using code

Mobile Application and Firmware

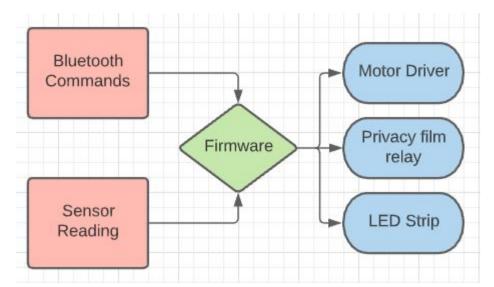


Mobile Application

The mobile application is the only way the user may control the autonomous settings of the window system



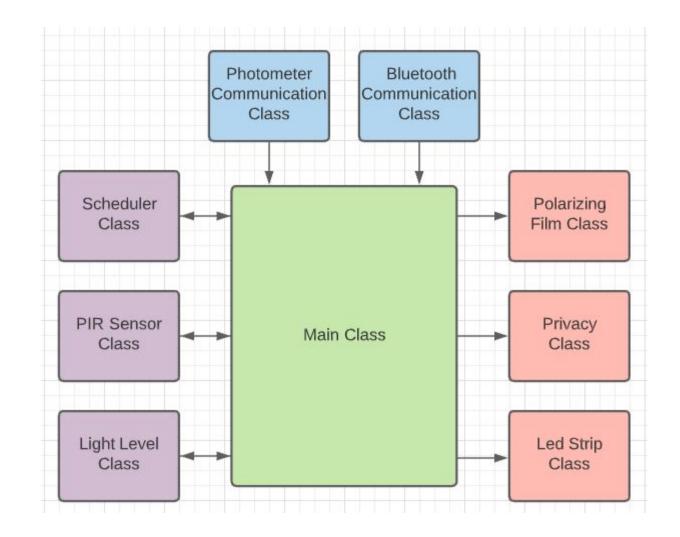
Processor And Firmware


The esp32 breakout board contains a dual core processor with wifi and bluetooth communication capability at extremely low cost.

The Micropython library is used to flash a low level python operating system to the esp32. This allow the firmware to be developed in python

Firmware

- Receives commands via bluetooth
- Commands Get or Set data values
- Commands call functions on processor
- Processor running constant updates which control automated functionality



Firmware Functionality

Kenneth Sauers

•

Photometer Communication Class

Brief: Communicates with photometer via serial communications

Startup: Starts serial communication with photometer

Runtime: Parces serial communication and sends light reading data to Main Class

Bluetooth Communication Class

Brief: Receives commands from mobile device that control the Automated Window System

Startup: Starts bluetooth functionality as a host

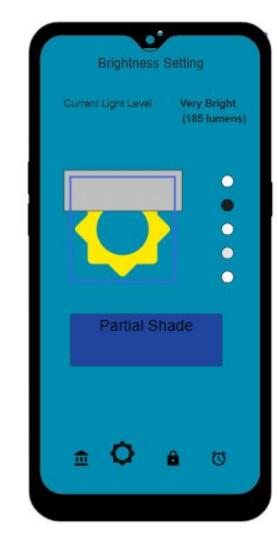
Runtime: parses bluetooth commands that set or get data from the systems.

PIR Class

Brief: Handles PIR sensor

Startup: Sets up digital pins to receive data from PIR sensor

Runtime: Interpretes reading from digital pins. Runs calculations that turn PIR data to useable data

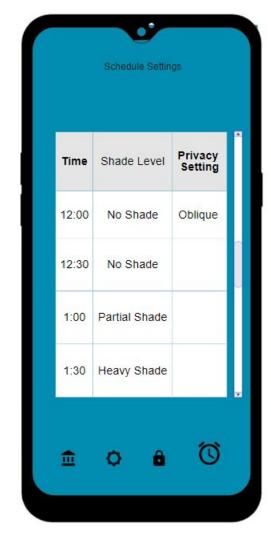

Light Level Class

Brief: Handles the amount on light which passes through the window unit

Startup: Initialize polarizing film to home position

Runtime: listens for bluetooth commands to dictate what the light level should be

Scheduler Class


Brief: Handles time related aspects of the window system.

Startup: creates a empty time table.

Runtime: Reads current time are matches it to the time table. That element of the time dictates the light level and privacy setting.

Privacy Class

Brief: handles privacy screen relay.

Startup: sets privacy screen to the clear setting.

Runtime: receives data from main class which dictates the state of the relay

Kenneth Sauers

Polarizing Film Class

Brief: handles the polarizing film mechanism.

Startup: Move the motor to home position

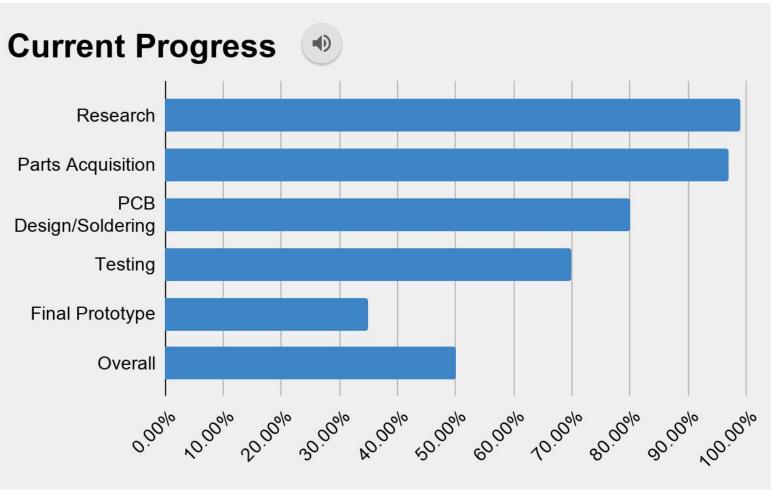
Runtime: Receives all positioning data from main class. Then moves the motor to have the desired effect of light level

LED Strip Class

Brief: Handles Led Strip relay

Startup: Turns the relay to the off position

Runtime: Listens for Bluetooth commands which change the values of the LED strip relay


Administrative Content

Project Budget

Item Model	Price
L298N	\$8.71
CON-SOCJ-2155	\$1.00
TMEZON Adapter	\$7.99
Nano Board CH340	\$13.86
	\$80.27
	\$15.80
FDS1010	\$69.71
AMN34111	\$23.49
PF030	\$118.00
	· · · · · · · · · · · · · · · · · · ·
16"x16" Self-Adhesive Film - White	\$199.00
	L298N CON-SOCJ-2155 TMEZON Adapter Nano Board CH340 FDS1010 AMN34111 PF030 16"x16" Self-Adhesive

			Bradley Howder
Component	Item Model	Price	Total
Processor	ESP32	\$11.99	\$669.68
Bearing	16 inch lazy suzan bearing	\$35.00	Budget
Timing Belt	5M GT2 Timing Belt	\$15.99	\$700
Stepper Motor	STEPPERONLINE Short Body Nema 17	\$10.99	
Frame Plywood	2ft*4ft	\$32.65	
Frame Siding	3in*1in*8ft	\$6.00	
Plexiglass	1ft*2ft	\$19.96	
Frame Mics	Hinge, finish, nails,glue	\$5.00	
Tu	50000	\$2.98	
Тах	ESP32	ψ2.90	

References

- 1. <u>http://www.aanddsolutions.com/sfb-photochromic-films/</u>
- 2. <u>https://www.techinstro.com/switchable-pdlc-film/</u>
- 3. <u>https://www.etechnophiles.com/I293d-vs-I298n-motor-driver-differences-specif</u> <u>ications-and-pinouts/</u>
- 4. <u>https://blog.banggood.com/how-to-choose-the-right-ac-adapter-for-your-gadg</u> <u>et-29870.html</u>